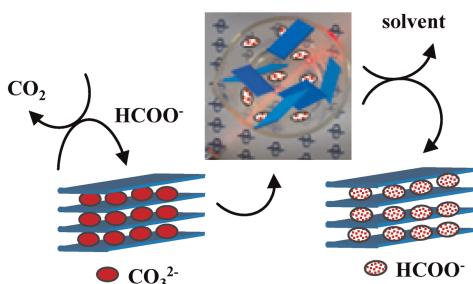

CONTENTS

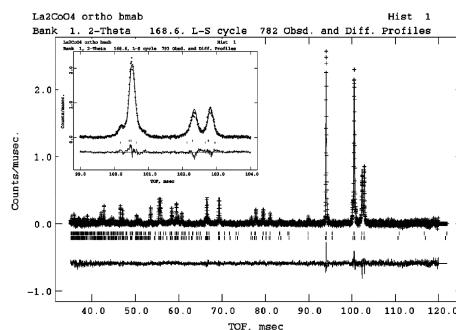
www.elsevier.com/locate/jssc

Abstracted/indexed in BioEngineering Abstracts, Chemical Abstracts, Coal Abstracts, Current Contents/Physics, Chemical, & Earth Sciences, Engineering Index, Research Alert, SCISEARCH, Science Abstracts, and Science Citation Index. Also covered in the abstract and citation database SCOPUS®. Full text available on ScienceDirect®.

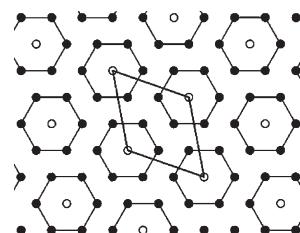

Regular Articles

Layered ruthenium hexagonal perovskites: The new series $[\text{Ba}_2\text{Br}_{2-2x}(\text{CO}_3)_x][\text{Ba}_{n+1}\text{Ru}_n\text{O}_{3n+3}]$ with $n=2, 3, 4, 5$
 Matthieu Kauffmann, Pascal Roussel and Francis Abraham
 Page 1957

The 2D contour plot of the carbonate ion calculated by MEM in $\text{Ba}_7\text{Ru}_4\text{Br}_{1.46}(\text{CO}_3)_{0.27}\text{O}_{15}$.

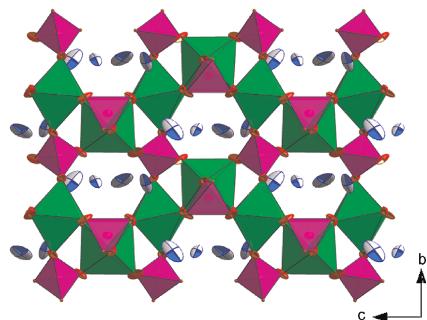

Evidences for decarbonation and exfoliation of layered double hydroxide in *N,N*-dimethylformamide–ethanol solvent mixture
 Claudia R. Gordijo, Vera R. Leopoldo Constantino and Denise de Oliveira Silva
 Page 1967

Hydrotalcite suspended in 1:1 (v/v) *N,N*-dimethylformamide–ethanol solvent mixture, at ambient temperature, undergoes decarbonation and exfoliation. The process is promoted by DMF hydrolysis. Restacking of LDH layers is achieved by evaporating the solvent.


Regular Articles—Continued

Structural observations on $\text{La}_2(\text{Ni},\text{Co})\text{O}_{4\pm\delta}$ phases determined from *in situ* neutron powder diffraction
 Stephen J. Skinner and Gisele Amow
 Page 1977

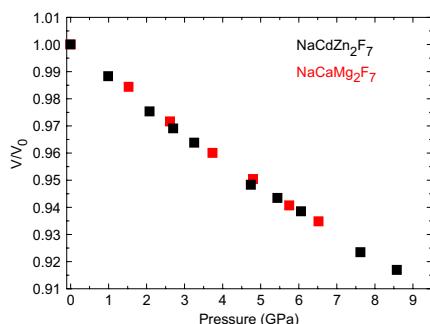
Two phase fit for $\text{La}_2\text{CoO}_{4\pm\delta}$ recorded at 150 °C showing the peak splitting of the two orthorhombic phases. Both phases transform to the tetragonal modification at elevated temperatures.


Preparation and lithium doping of gallium oxynitride by ammonia nitridation via a citrate precursor route
 Shinichi Kikkawa, Kazuteru Nagasaka, Takashi Takeda, Mark Bailey, Toshitaka Sakurai and Yoshinari Miyamoto
 Page 1984

Schematic gallium vacancy distribution within a Ga-plane in wurtzite-type gallium oxynitride prepared via a citrate precursor route. Closed and open circles represent gallium and its vacancy sites, respectively. This is the most probable case among various kinds of statistical vacancy distribution, where $\text{Ga/vacancy}=6/1$ in atomic ratio. About 10 at% Li^+ could be doped to the gallium oxynitride by substituting Ga^{3+} . Well-crystallized new oxynitride, $\text{Li}_2\text{Ga}_3\text{NO}_4$, isostructural with h-GaN, was also obtained in the preparation with $\text{Li/Ga} \geq 1$.

Novel KTP-like complex phosphates $KM_{0.33}^{II}Nb_{0.67}PO_5$ (M^{II} —Mn, Co)

A.A. Babaryk, I.V. Zatovsky, V.N. Baumer, N.S. Slobodyanik, P.G. Nagorny and O.V. Shishkin
Page 1990

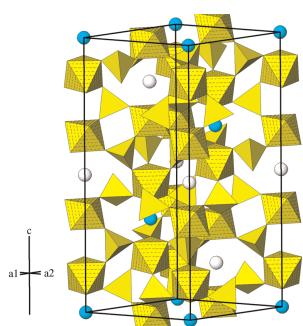


Chain-structure fragment of $KM_{0.33}^{II}Nb_{0.67}PO_5$ (M^{II} —Mn, Co) viewed along the [100] direction. K atoms are located in the cavities of anionic framework.

Compressibilities of disordered fluoride pyrochlores

NaCdZn₂F₇ and NaCaMg₂F₇

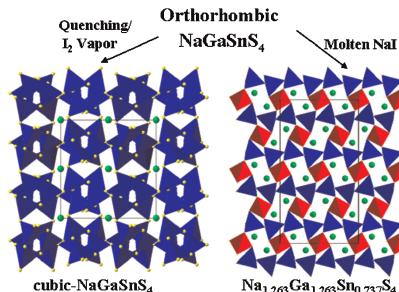
Andrzej Grzechnik, Jose Maria Posse, Wolfgang Morgenroth and Karen Friese
Page 1998



Pressure dependence of reduced unit-cell volumes in NaCdZn₂F₇ (black symbols) and NaCaMg₂F₇ (red symbols).

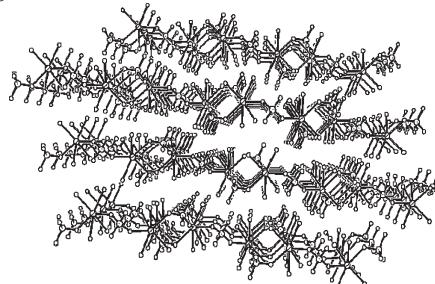
Synthesis, structure and characterisation of $Fe_{0.50}Ti_2(PO_4)_3$:

A new material with Nasicon-like structure


S. Benmokhtar, A. El Jazouli, A. Aatiq, J.P. Chaminade, P. Gravereau, A. Wattiaux, L. Fournès and J.C. Grenier
Page 2004

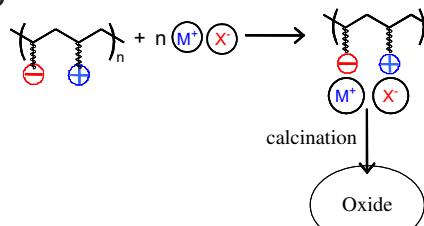
Polyhedral view down [110] of the $Fe_{0.50}Ti_2(PO_4)_3$ structure ($[TiO_6]$ octahedra are shown with light shading, $[PO_4]$ tetrahedra with dark shading, Fe/\square as circles).

Solid-state synthesis, structural variants and transformation of three-dimensional sulfides, $AGaSnS_4$ (A = Na, K, Rb, Cs, Tl) and $Na_{1.263}Ga_{1.263}Sn_{0.737}S_4$


Asmita Kumari and Kanamaluru Vidyasagar
Page 2013

Orthorhombic-NaGaSnS₄ transforms, on quenching or during iodine vapor transport, to thermodynamically stable cubic form of $AGaSnS_4$ (A = Na, K, Rb, Cs, Tl) compounds and decomposes, in molten NaI, to isostructural $Na_{1.263}Ga_{1.263}Sn_{0.737}S_4$.

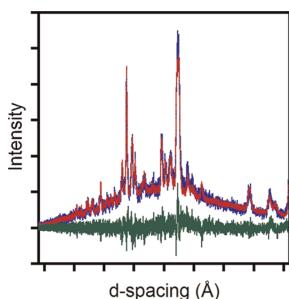
Hydrothermal synthesis, crystal structure and properties of 2-D and 3-D lanthanide sulfates


Yan Xu, Shaohua Ding and Xuefang Zheng
Page 2020

Two new lanthanum sulfates $DySO_4(OH)$ **1** and $Eu_2(SO_4)_3(H_2O)$ **2** have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. It displays a three dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains.

Nb-Ta, Nb-Mo and Nb-V oxides prepared from hybrid organic-inorganic precursors

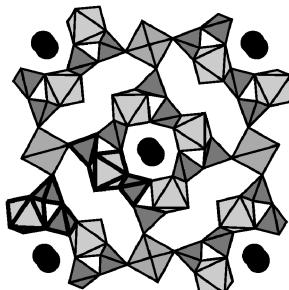
N. Deligne, D. Bayot, M. Degand and M. Devillers
Page 2026


An alternative route based on hybrid organic-inorganic materials was implemented to synthesise Nb-Ta, Nb-Mo and Nb-V oxides. The hybrid materials were prepared by incorporation of inorganic salts based on Nb^V , Ta^V , V^V and Mo^{VI} in an organic polymer bearing cationic as well as anionic moieties. A thermal treatment of these hybrid blends has allowed the formation of multimetalllic oxides.

Continued

An in situ time-of-flight neutron powder diffraction study of the humidity-induced phase transition in sodium monothiophosphate

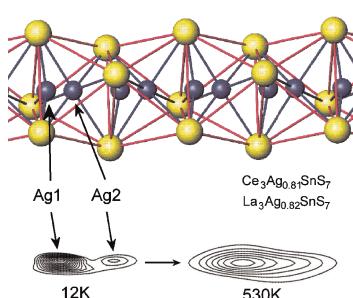
Nathan J. Takas and Jennifer A. Aitken


Page 2034

Anhydrous β -Na₃PO₃S has been observed to convert to anhydrous α -Na₃PO₃S upon exposure to a humid atmosphere. In situ neutron powder diffraction was used to monitor the transition. A whole pattern fitting method was used to determine the phase composition, as a function of time. The data were evaluated using several solid-state kinetic models.

A large series of isotypic Mo(V) diphosphates with a tunnel structure: From $A(\text{MoO})_{10}(\text{P}_2\text{O}_7)_8$ with $A = \text{Ba, Sr, Ca, Cd, Pb}$ to $A(\text{MoO})_5(\text{P}_2\text{O}_7)_4$ with $A = \text{Ag, Li, Na, K}$

André Leclaire, Vincent Caignaert and Bernard Raveau
Page 2044

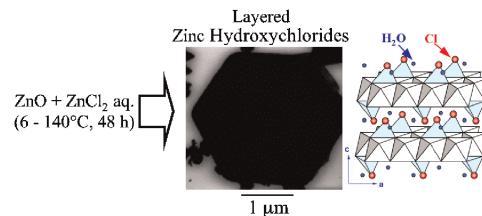


The structure of Pb(MoO)₁₀(P₂O₇)₈ viewed along *b* with the Pb ions in the octagonal tunnels.

Crystal structures of the $\text{La}_3\text{AgSnSe}_7$ and $R_3\text{Ag}_{1-\delta}\text{SnS}_7$ ($R = \text{La, Ce}$; $\delta = 0.18-0.19$) compounds

M. Daszkiewicz, L.D. Gulay, A. Pietraszko and V.Ya. Shemet

Page 2053

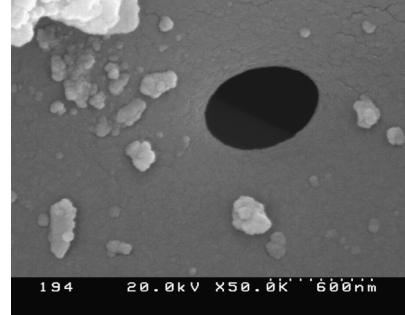


In the $R_3\text{Ag}_{1-\delta}\text{SnS}_7$ ($R = \text{La, Ce}$; $\delta = 0.18-0.19(1)$) compounds high mobility of the Ag atom was found at different temperature conditions (12–530 K). The pseudopotentials determined through the Ag atoms shows relatively low barrier between two nearest positions which decreases when temperature rises.

Synthesis and characterization of layered zinc hydroxychlorides

Hidekazu Tanaka, Akiko Fujioka, Aya Futoyu, Kazuhiko Kandori and Tatsuo Ishikawa

Page 2061

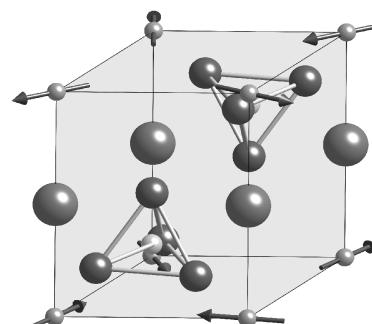


Layered zinc hydroxychlorides (Zn₅(OH)₈Cl₂ · H₂O: ZHC) were synthesized from ZnO nano-particles aged with aqueous ZnCl₂ solutions at different temperatures ranging from 6 to 140 °C for 48 h. The ZHC particles obtained were hexagonal plate particles with sizes ranging from 1 to 3 μm .

Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl₂O₄ phosphors

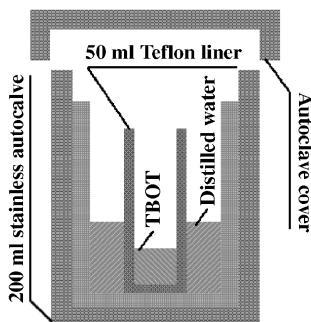
Vijay Singh, R.P.S. Chakradhar, J.L. Rao and Dong-Kuk Kim

Page 2067

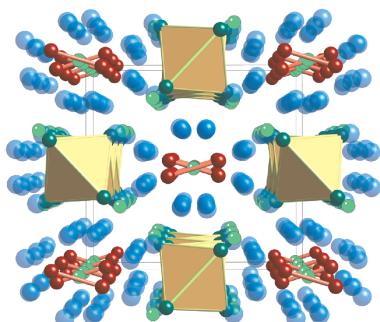


MgAl₂O₄:Mn phosphors have been prepared at 500 °C by combustion route and are well characterized by PXRD, SEM and FTIR. Photoluminescence studies showed green/red emission indicating two independent luminescence channels in this phosphor. EPR spectrum exhibits allowed and forbidden hyperfine structure at $g = 2.003$. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed.

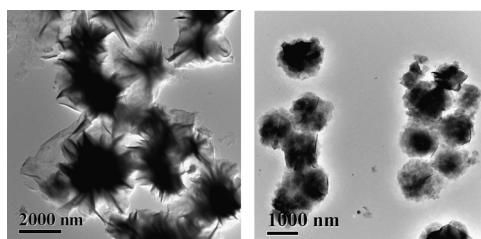
Neutron powder diffraction experiments on the layered triangular-lattice antiferromagnets $\text{RbFe}(\text{MoO}_4)_2$ and $\text{CsFe}(\text{SO}_4)_2$


Toshiya Inami

Page 2075

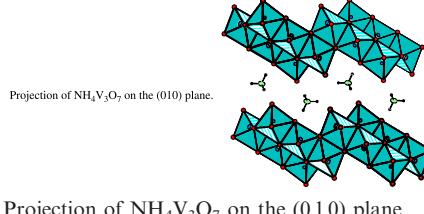

Crystal and magnetic structure of RbFe(MoO₄)₂.

Vapor-thermal preparation of highly crystallized TiO_2 powder and its photocatalytic activity
 Yaorong Su, Jiaguo Yu and Jun Lin
 Page 2080


Nanocrystalline anatase TiO_2 powder photocatalysts with a very high photocatalytic activity were synthesized by a vapor-thermal method using tetrabutyl titanate as precursor at a temperature range from 120 to 200 °C.

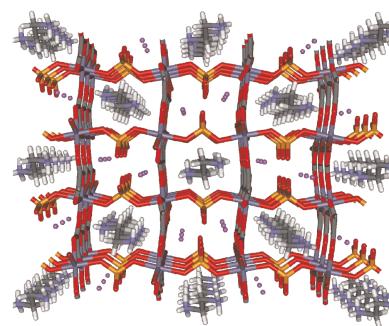
Synthesis, crystal structures, magnetic and electric transport properties of $\text{Eu}_{11}\text{InSb}_9$ and $\text{Yb}_{11}\text{InSb}_9$
 Sheng-qing Xia, Jonathan Hullmann, Svilen Bobev, Arif Ozbay, Edmund R. Nowak and Veronika Fritsch
 Page 2088

Reported are the synthesis, the structure and the magnetic and electronic properties of two new rare-earth Zintl phases, $\text{Eu}_{11}\text{InSb}_9$ and $\text{Yb}_{11}\text{InSb}_9$. The close relationships between these structures and those of the monoclinic α - $\text{Ca}_{21}\text{Mn}_4\text{Sb}_{18}$ and $\text{Ca}_{21}\text{Mn}_4\text{Bi}_{18}$ are also discussed.


Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol
 Li-Xia Yang, Ying-Jie Zhu, Hua Tong, Zhen-Hua Liang, Liang Li and Ling Zhang
 Page 2095

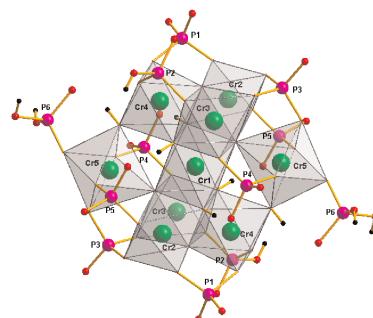
Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using $\text{Ni}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$ in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 °C for different reaction time. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 °C.

Synthesis of new mixed valence compounds $\text{MV}^{5+}\text{V}_2^{4+}\text{O}_7$ ($\text{M} = \text{NH}_4, \text{K}$): Crystal structure of $\text{NH}_4\text{V}_3\text{O}_7$ and electrical properties of KV_3O_7
 J.C. Trombe, O. Szajwaj, Ph. Salles and Jean Galy
 Page 2102


BP 94347, 31055 Toulouse cedex, France.

Projection of $\text{NH}_4\text{V}_3\text{O}_7$ on the (010) plane.

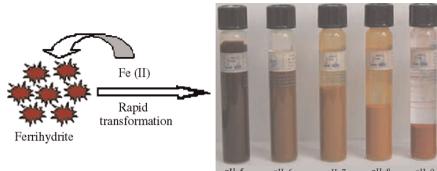
$\text{Na}(\text{H}_3\text{NCH}_2\text{CH}_2\text{NH}_3)_{0.5}[\text{Co}(\text{C}_2\text{O}_4)(\text{HPO}_4)]$: A novel phosphoxalate open-framework compound incorporating both an alkali cation and an organic template in the structural tunnels


Tao Huang, Britt A. Vanchura, Yongkui Shan and Songping D. Huang
 Page 2110

View along a of the structure of $\text{Na}(\text{H}_3\text{NCH}_2\text{CH}_2\text{NH}_3)_{0.5}[\text{Co}(\text{C}_2\text{O}_4)(\text{HPO}_4)]$ exhibiting 3D tunnels created and occupied by the Na^+ and $\text{H}_3\text{NCH}_2\text{CH}_2\text{NH}_3^+$ cations.

Synthesis of a novel chromium-phosphate built up with unprecedented $[\text{CR}_9\text{P}_{12}\text{O}_{58}\text{H}_{12}]^{17-}$ clusters under hydrothermal conditions

Wei Liu, Ding-Bang Xiong, Xin-Xin Yang and Jing-Tai Zhao
 Page 2116

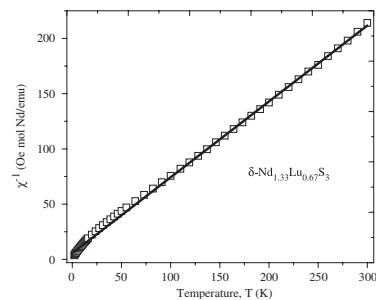


Polyhedral representation of the oxo-chromium core in compound 1, showing the bridging function of phosphate groups around the octahedral chromium core (CrO_6 octahedron, grey and transparent; Cr, green sphere; P, pink sphere; O, red sphere; H, small black sphere).

Continued

Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite

Hui Liu, Ping Li, Meiyi Zhu, Yu Wei and Yuhan Sun
Page 2121



Fe(II)-adsorbed ferrihydrite can rapidly transform into lepidocrocite or/and goethite or/and hematite. Which product dominates depends on the transformation conditions of ferrihydrite such as temperature, pH, reaction time, etc. In the current system, there exist two transformation mechanisms. One is dissolution/reprecipitation and the other is solid-state transformation. The transformation mechanisms from Fe(II)-adsorbed ferrihydrite to lepidocrocite and goethite were investigated.

Syntheses, structure, magnetism, and optical properties of the interlanthanide sulfides δ -Ln_{2-x}Lu_xS₃ (Ln=Ce, Pr, Nd)

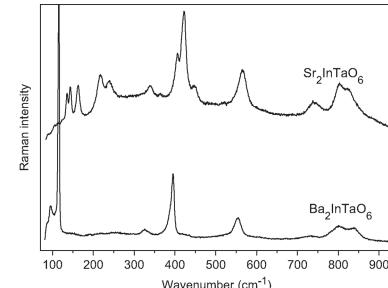
Geng Bang Jin, Eun Sang Choi, Robert P. Guertin, James S. Brooks, Travis H. Bray, Corwin H. Booth and Thomas E. Albrecht-Schmitt

Page 2129

Inverse molar neodymium magnetic susceptibility vs. T for δ -Nd_{1.33}Lu_{0.67}S₃ under an applied magnetic field of 0.1 T between 2 and 300 K. The straight line represents the fit to Curie-Weiss law in the range of 100–300 K.

Synthesis, characterization of TiO₂ nanotubes-supported MS (TiO₂NTs@MS, M=Cd, Zn) and their photocatalytic activity

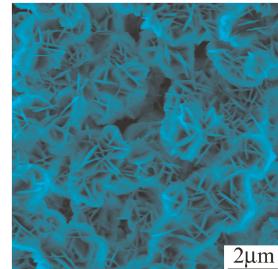
Hong Li, Baolin Zhu, Yunfeng Feng, Shurong Wang, Shoumin Zhang and Weiping Huang


Page 2136

TiO₂ nanotubes-supported MS (TiO₂@MS, M=Cd, Zn) are synthesized by a simple wet chemical method at room temperature. The composites are active in the photooxidation reaction and their photocatalytic performances are enhanced compared with their corresponding MS nanoparticles or the support (TiO₂ nanotubes). The results indicate that the composites exhibit cooperative or synergistic effects of MS and the support (TiO₂ nanotubes), which greatly influences the optical and photocatalytic properties of the obtained TiO₂@MS composites.

Raman-spectroscopic investigation of Ba₂InTaO₆ and Sr₂InTaO₆ perovskites

A. Dias, L.A. Khalam, M.T. Sebastian and R.L. Moreira
Page 2143

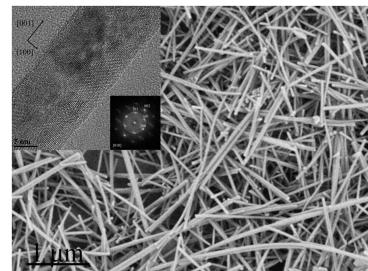


Raman analysis of Ba₂InTaO₆ and Sr₂InTaO₆ perovskites. Two different spectral profiles are clearly observed, which indicates that the ceramics likely to occur in different structures. Barium perovskites exhibit 14 Raman-active bands in a tetragonal structure, while strontium-based materials show 24 phonon modes associated with a lower-symmetry structure (monoclinic).

Synthesis and characterization of flower-like β -Ni(OH)₂ nanoarchitectures

Yuanyuan Luo, Guotao Duan and Guanghai Li

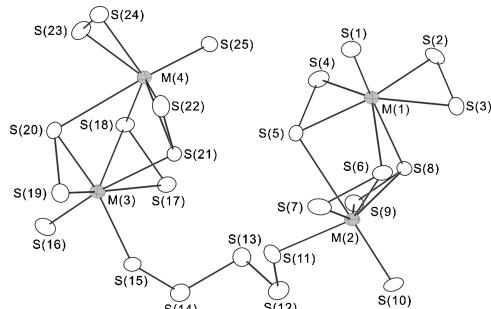
Page 2149



Flower-like Ni(OH)₂ nanoarchitectures were synthesized by a one-step mild hydrothermal reaction with the aid of ethylenediamine in NiCl₂ aqueous solution. The flower with the size of several micrometers in diameter is composed of the ultra-thin nanosheets of several nanometers in thickness. The flowers could be in catalysts, sensor and electrochromic devices, and alkaline rechargeable batteries.

Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles

Igor Djerdj, Georg Garnweitner, Dang Sheng Su and Markus Niederberger


Page 2154

Lanthanum hydroxide nanoparticles are synthesized based on a nonaqueous sol-gel process involving the reaction of La(O*i*Pr)₃ and KMnO₄ with organic solvents such as benzyl alcohol, 2-butanone and a 1:1 vol. mixture thereof. In dependence of the reaction parameters, the La(OH)₃ nanoparticles undergo a shape transformation from short nanorods to micron-sized nanofibers.

Syntheses, crystal structures, and optical properties of $K_3V_{0.32}Ta_{0.68}S_4$, $K_6Nb_{1.07}Ta_{2.93}S_{22}$, $K_6Nb_{2.97}Ta_{1.03}S_{25}$, $K_3Cu_3Nb_{0.98}Ta_{1.02}S_8$, and $KCu_2Nb_{0.53}Ta_{0.47}S_4$
Yuandong Wu and Wolfgang Bensch

Page 2166

The five compounds $K_3V_{0.32}Ta_{0.68}S_4$, $K_6Nb_{1.07}Ta_{2.93}S_{22}$, $K_6Nb_{2.97}Ta_{1.03}S_{25}$, $K_3Cu_3Nb_{0.98}Ta_{1.02}S_8$, and $KCu_2Nb_{0.53}Ta_{0.47}S_4$ have been prepared in polychalcogenide melts. The structures of these compounds base on discrete tetrahedra $[MS_4]^{3-}$ ($M=V/Ta$), complex $[M_4S_{22}]^{6-}$ and $[M_4S_{25}]^{6-}$ anions comprised of two M_2S_{11} subunits bridged by a S_2 or S_3 chain, ${}^1\infty[Cu_3M_2S_8]^{3-}$ anionic chains, and ${}^2\infty[Cu_2MS_4]^{3-}$ ($M=Nb/Ta$) anionic layers formed by corner sharing and edge sharing between CuS_4 and MS_4 tetrahedra.

^{17}O NMR studies of local structure and phase evolution for materials in the $Y_2Ti_2O_7$ – $ZrTiO_4$ binary system
John L. Palumbo, Tobias A. Schaedler, Luming Peng, Carlos G. Levi and Clare P. Grey
Page 2175

Schematic of the evolution of the crystalline phases in a material with stoichiometry $Y_{1.6}Zr_{0.4}Ti_2O_{7.2}$ (10Zr), as a function of heat treatment at 800, 1000 and 1300 °C.

Author inquiries

Submissions

For detailed instructions on the preparation of electronic artwork, consult the journal home page at <http://authors.elsevier.com>.

Other inquiries

Visit the journal home page (<http://authors.elsevier.com>) for the facility to track accepted articles and set up e-mail alerts to inform you of when an article's status has changed. The journal home page also provides detailed artwork guidelines, copyright information, frequently asked questions and more.

Contact details for questions arising after acceptance of an article, especially those relating to proofs, are provided after registration of an article for publication.

Language Polishing

Authors who require information about language editing and copyediting services pre- and post-submission should visit <http://www.elsevier.com/wps/find/authorshome.authors/languagepolishing> or contact authorsupport@elsevier.com for more information. Please note Elsevier neither endorses nor takes responsibility for any products, goods, or services offered by outside vendors through our services or in any advertising. For more information please refer to our Terms & Conditions at http://www.elsevier.com/wps/find/termsconditions.cws_home/termsconditions.

For a full and complete Guide for Authors, please refer to *J. Solid State Chem.*, Vol. 180, Issue 1, pp. *bmi–bmv*. The instructions can also be found at http://www.elsevier.com/wps/find/journaldescription.cws_home/622898/authorinstructions.

Journal of Solid State Chemistry has no page charges.